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AN ESSAY ON THE STRING-COUPLED PENDULUM 

 
 
 
Author’s preface. The problem of predicting the motion of a string-coupled 
pendulum, shown opposite, was presented to my freshman college physics class 
as unsolved. And so it remained, at least in my thinking, for the next ten years. 
This is the season in which a youth might imbibe any number of Western man’s 
elegant and related intellectual syntheses. These include our model of light 
pulses as orthogonally alternating electric and magnetic fields, which measure 
the universe by the speed of their advance; or the eccentrically periodic 
ascendance and decline of pagan and puritan instincts that we record as human 
history; or the endless precession of DNA's twin coils, carrying the history of life's 
evolution. Each of these phenomena manifests what we would call the working-
out of a dualistic principle with time. 
 
Fascination with the string-coupled pendulum would seem to owe to its being the 
simplest imaginable generator of this sort of movement. Even while watching the 
pendulum's motion, it is hard to believe that such a simple device could possibly 
behave in ways that are analogous to the several complex and important 
processes of which it might be thought symbolic. Perhaps it is a respect for the 
imprint that this image of dualism-in-motion has made on recent thought that has 
led to establishing the mechanics of a string-coupled pendulum.  
 
A notarized memorial attached to my original solution indicates that it was 
submitted in 1975. Though I do not recall the journal, their rejection was 
unforgettable insofar as I was elaborately informed that I had not defined the 
problem – specifically in that I did not distinguish the horizontal member as to 
whether it was a string or a rigid mass-less beam. One might have thought the 
string-coupled aspect title might suffice, since the distinction has no bearing on 
the motions observed: a beam, however rigid, cannot develop a bending moment 
when the only forces applied to it are tensile and act at its ends. Absent a 
bending moment, rigidity is irrelevant. 
 



 ii 

Many years later, in the course of an email discussion of my solution, I was to 
learn that another solution by a Professor Michael J. Moloney was published in 
the American Journal of Physics (Volume 46, Issue 12, pp. 1245-1246; 1978). 
Though this submission’s completeness, dimensional integrity, and initial 
assumptions are questionable to me, Professor Moloney does not acknowledge 
such questions, and thereby retains the right of precedence.  
 
This more academically acceptable solution remains problematic in my thinking 
because it only examines motions that are perpendicular to the plane in which 
the resting pendulum hangs. As is shown in this paper, string-coupled pendula 
exhibit their most interesting dynamics when set in motion by initial horizontal 
displacements in any direction. 
 
Professor Moloney’s analytic premise has motion directed by dynamic, horizontal 
torsion. But we observe that the pendulum’s characteristic bi-harmonic 
oscillations proceed quite clearly from an initial displacement of one pendulum 
weight completely within the resting plane – whence it is impossible for torsion to 
develop. Noting that the pendulum’s behaviors exhibit a continuous pattern as 
the initial displacement varies from perpendicular to the resting plane to being 
confined wholly within it, we reject the premise of torsion as having much analytic 
potency. 
 
In any case, this paper revises a digital scan of my 1975 original. The revision 
was undertaken during odd, idle hours in order to exploit the possibilities that 
desktop publishing software has for creating appealing copy. It is resubmitted for 
whatever uses and amusements it might provide. 
 
 
 
______________ 

Kurt Roemer 
San Francisco 
June, 2013 
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An Essay on the String-coupled Pendulum 
 
 
Article 1: Notation, co-ordinate frames, and sign conventions. When at rest, a 
symmetric string-coupled pendulum can be fully described by as few as four 
parameters, viz.: the Q, L, S and H of Figure 1-1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1-1 
 
 
 
 
 
 
 
 
These dimensions lie in the figure’s ‘X-Z’ plane, where the ‘X’ direction is given 
by a line joining the two support locations of the pendulum, and the ‘Z’ direction is 
aligned with gravity G. The ‘Y’ direction is perpendicular to this plane, and the 
positive sense or each direction is chosen so as to give us a right-handed frame 
of reference.  
 
Circled integers  1  through  6  refer to this system's node points. In all our 
analysis we will refer to the variables of position P acceleration A and reaction R 
as they occur at these nodes and as they act in each of the three coordinate 
directions, e.g.: P1X. A variable M denotes the mass of either pendulum weight.  



 2 
 

 

Article 2: The equation of motion for a bi-harmonic oscillator. A string-coupled 

pendulum’s most characteristic dynamics are those of bi-harmonic oscillation, as 

instantiated by Figure 2-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2-1 
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These dynamics will be observed when the pendulum’s movement is initiated by 
displacing one mass along either the X- or the Y-axis. A general algebraic 
description of the two wave forms shown in Figure 2-1 would be …  
 
 

Eqa. 2-1 
 
 
 

Eqa. 2-2 
 
 
where D corresponds to the value of P1 when time t is equal to zero; where P2 is 
zero at t=0; and where 1 and 2 define the periods of the bi-harmonic cycles 
and epicycles marked-out in the lower portion of Figure 2-1. Solution to the 
pendulum problem lies in establishing these internal frequencies 1 and 2 on 
the basis of the dimensions describing a particular string-coupled pendulum. Let 
us proceed to isolate the pendulum’s natural frequencies empirically before 
presenting a rigorous solution – which requires more algebra than would be 
desirable for satisfying an ordinary level of curiosity.  
 
If (in the analysis to follow) we are able to establish that the mutual effects of the 
X- and Y-movements of the pendulum can be superimposed upon one another 
by simple addition, then Equations 2-1 and 2-2 can be expected to govern 
motions proceeding from all initiating displacements D1X, D2X, D1Y, and D2Y of the 
two masses.  
 
Retaining for the moment our reference to motions occurring entirely in the X- or 
entirely in the Y-direction, the general equations for the movements along either 
coordinate axis would then be: 
 
 
 

Eqa. 2-3 
 
 
 
 
 
 
 

Eqa. 2-4 
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Intuition would suggest that setting D1 = D2 or D1 = –D2 will produce some 
interesting results. Let us see.  
 
When  D1 = D2 (=D) obtains, Equations 2-3 and 2-4 become:  
 
 
 
 
 

Eqa. 2-5 
 
 
 
Now we can apply the formulae for the sums and differences of angles to the 
expression in the brackets of this equation. Recalling that … 
 
 
 
 
 
 
 
we can transform Equation 2-5 into: 
 
 
 
 
 
 
 
 
 
 
 
 

Eqa. 2-6 
 
Multiplying as indicated brings us to: 
 
 
 
 
 
 

Eqa. 2-7 
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Factoring with an eye to cos2(2·t/2) + sin2(2·t/2) = 1 will yield: 

 
 

Eqa. 2-8 
 
 

Observing that cos2  sin2  cos(2) we finally arrive at … 

 
Eqa. 2-9 

 

which isolates the smaller of the two internal frequencies 2 governing the simple 

harmonic motion proceeding from equal initial displacements, D1 = D2, of both 
masses in either the X- or the Y- direction. An equally tedious process, 
employing the same trigonometric identities in the same way, will show the equal 
and opposite initial displacements of the pendulum's two masses, D1 = –D2,  will 

yield a similar equation in the larger of the internal frequencies, 1: 

 
Eqa. 2-10 

 
Now let us bring Equations 2-9 and 2-10 to bear on the movements to be 
observed along the X- and Y- axes following either of these sets of initial 
conditions. 
 
 
 
 
 
Article 3: Observations of motion along the Y axis. Taking the case of equal initial 
displacements along the Y-axis first, our observations would be those depicted in 
Figure 3-1, where the two masses behave identically to the single mass of a 
simple pendulum with a total string length of Q + L. The equation for the motion 
of a simple pendulum, such as on the right in Figure 3-1, 
 
 

Eqa. 3-1 
 
will be derived later as a part of our formal statement of the mechanics of the 

string-coupled pendulum. It will then be shown that the frequency  of a simple 

pendulum is given by the square root of the intensity of the local gravity field G 
divided by the length E of the string joining the pendulum weight to its support: 
 
 

Eqa. 3-2 
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Fig. 3-1 
 
 
A comparison of Equations 2-9 and 3-1, together with our analogy to the simple 
pendulum in Figure 3-1, allows us to transform Equation 3-2 into the equation for 

the smaller of the two frequencies 2Y governing motion along the Y-axis of a 

string-coupled pendulum: 
 
 

Eqa. 3-3 
 
 
This analogy to a simple pendulum of an ‘appropriate equivalent length’ E is also 
helpful in determining the larger of the two frequencies governing motion along 

the Y-axis. Recalling from Equation 2-10 that 1Y is the frequency of the simple 

harmonic motion following from equal and opposite initializing displacements, we 
develop Figure 3-2 to visualize the ensuing motion by having the pendulum 
weights move in a manner that always keeps them 180o out of phase. The period 
of this motion is that of a simple pendulum with an equivalent length E 
somewhere between L and L + Q: 
 
 

Eqa. 3-4 
 
In order to determine E for the initial conditions in effect here, we must examine 
the extreme cases of the value of S, the length of the horizontal string joining the 
two halves of a string-coupled pendulum.  
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Fig. 3-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3-3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Figure 3-3, when S approaches H the two halves of the pendulum 
become increasing independent, and the inner and outer cycles merge to a 
single harmonic wave form. Here the simple pendulum producing analogous 
motion has an equivalent length E equal to L + Q: 
 

Eqa. 3-5 
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Let us now repeat our experiment with a symmetric string-coupled pendulum that 
has been set in motion by equal and opposite displacements along the Y-axis, 
but with S approaching zero: 
 
 
 
 

Fig. 3-4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here again we observe the inner and outer cycles converging to a simple 
harmonic wave form, while the equally opposed forces developed through the 

symmetric movements of the two masses tend to peg node  Υ  to a fixed point at 

a distance Q below the supports. In this case an analogous simple pendulum 
would have an equivalent length of L: 
 

Eqa. 3-6 
 
We may also observe that this equivalent length will be approached as Q 
approaches zero. 
 
At this point we have nothing to lose by adding the assumption of a linear 
relationship between E and S to our growing list of what must be proven later. 
Postulating a Iinear Iinkage between Equations 3-5 and 3-6 suggests that the 
equivalent length E of a string-coupled pendulum, initialized by equal and 
opposite displacements along the Y-axis, to be that of a simple pendulum of 
length … 
 
 

Eqa. 3-7 
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Recurring again to Equation 3-2, we now have an empirically derived opinion for 
the greater of the two frequencies governing motion in the Y-direction, viz.: 
 
 
 

Eqa. 3-8 
 
 
 
 
 
 
 
 
Article 4: Observations of motion along the X-axis. The two previous articles 
developed simple experiments for revealing the natural frequencies of motion 
along the Y-axis of the string-coupled pendulum. These methods can be applied 
directly to a similar derivation of the natural frequencies relating to motion in the 
X-direction. 
 

We know that the larger of these two frequencies, 1 will correspond to the 

simple harmonic oscillations set in motion by equal and opposite initial displace-
ments of the two pendulum weights along the X-axis, as shown in Figure 4-1: 
 
 

Fig. 4-1 
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Here we observe that the equally opposed forces developed in the symmetric 
movements of the pendulum's masses will peg nodes  3  and  4  motionless in 
their rest positions, and that the only dimension entering into the dynamics of this 
system is L, hence: 
 
 

Eqa. 4-1 
 
 

We would expect 2X to reveal itself when the initial X-displacements are alike in 

both magnitude and direction, as shown in Figure 4-2. In this instance we 
observe displacements of the entire plane of the string-coupled pendulum at a 
frequency corresponding to that of a simple pendulum with the same total 
distance between its point of support and the pendulum weight. The frequency of 
this motion is given by: 
 
 

Eqa. 4-2 
 
 
 
 

Fig. 4-2 
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Article 5: Pulses per half cycle in Y-motion. Let us now propose an empirical 

method for testing our experimental estimates for the internal frequencies, 1 

and 2, governing bi-harmonic oscillations along both the X- and Y-axes of a 

string-coupled pendulum. Laboratory procedures for recording the instantaneous 
positions, velocities, and accelerations of moving bodies are far from trivial, 
requiring much more apparatus than would be in keeping with the spirit of using 
the straight-forward instrument of a simple pendulum to infer the behaviors of the 
string-coupled pendulum.  
 
Returning to the equations for bi-harmonic motion that introduced Article 2, we 
can contrive another experiment to easily prove or disprove our work to this 
point. Please recall that these dynamics follow from an initial displacement of 
only one of the pendulum weights, while the other is left to begin movement from 
its rest position. We have postulated the following equation for the movement of 
one of the node points denoting the location of a pendulum weight: 
 
 
 

Eqa. 2-1 
 
 

And we have observed that frequencies 1 and, 2 in this equation define the 

periods of the inner and outer cycles of the bi-harmonic motion visualized in 
Figure 2-1. 
 
These frequencies are apparent in an easily made observation of the number of 
times one of the pendulum weights will oscillate between those occasional cycles 
when it appears to be completely at rest. A count N of number of pulses per half 
cycle is given by half the ratio of larger period to the shorter period: 
 
 
 
 

Eqa. 5-1 
 
 
 
The most pleasing development of pulses per half cycle available for Y-motion is 
rather indirect. It follows from establishing a common denominator for the internal 

frequencies 1 and 2. Equation 3-8 is modified in this direction by multiplying is 

numerator and denominator by √H(LQ): 
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Eqa. 5-3 
 
 
Carrying through with the indicated multiplication yields:  
 
 
 

Eqa. 5-4 
 
 
A certain operation on the denominator in Equation 5-4 introduces an interesting 
possibility for recombining terms… 
 
 
 
 
 

Eqa. 5-5 
 
 
 
 
 

Eqa. 5-6 
 
 
 
 
 
 

Eqa. 5-7 
 
resulting in: 
 
 
 
 
 

Eqa. 5-8 
 
 
Equation 5-8 presents us with easily measured areas in the X-Z plane … 
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
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
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Eqa. 5-9 
 

 

Eqa. 5-10 
 
 

Eqa. 5-11 
 

 
that can be visualized in terms of Figure 5-1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5-1 
 

These parameters allow 1’s reformulation as …  

 
 
 

Eqa. 5-12 
 
 

which creates attractive comparisons with 2 when Equation 3-3 is reformulated 

on the same common denominator … 
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

2
N




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Eqa. 5-13 

 
 
namely: 
 
 

Eqa. 5-14 
 
 
Substituting Equations 5-12 and 5-14 into our Equation 5-1 for the number of 
pulses per half cycle yields: 
 
 

Eqa. 5-15 
 
 
Multiplying both the numerator and denominator of Equation 5-15 by the numer-
ator will present a great many terms for elimination … 
 
 
 

Eqa. 5-16 
 
 
leading to: 
 
 

Eqa. 5-17 
 
 

If we then note that  << ϑ for pendula having the most attractive dynamics, we 

can finally arrive at a compact expression for Y-motion’s number N of pulses per 
half cycle: 
 
 

Eqa. 5-18 
 
 
 
 
 
 
 
 



 15 
 

QL

L

L

G

QL

G







1

2




 









1

1

2

1
N

QL

L
1

QL

L
1

2

1
N






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Article 6: Pulses per half cycle in X-motion. Developing the number of pulses per 
half cycle equation for X-motion is best accomplished through a more direct 
treatment of Equation 5-1. It begins by taking a ratio of the pendulum’s two 
internal frequencies … 
 
 

Eqa. 6-1 
 
 
which allows Equation 5-1 to be restated as: 
 
 

Eqa. 6-2 
 
 

For X-motion  is given by references to Equations 4-1 and 4-2, which provide 

the appropriate 1 and 2 for entry into Equations 6-1 and 6-2. These 

substitutions …  
 
 
 
  

Eqa. 6-3 
 
  
yield the count N of the number of pulses per half cycle to be observed for a 
string-coupled pendulum exhibiting bi-harmonic motion along its X-axis: 
 
 
 
 

Eqa. 6-4 
 
 
 
Placing this equation’s right-most ratio on a common denominator … 
 
 
 

Eqa. 6-5 
 
 
yields an opportunity for simplification by multiplying the numerator and the 
denominator by the numerator: 
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
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 1

Q

L

Q

L

Q

L

2

1
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LQLL2QL

2

1
N






2

2

Q

LQL

2

1

Q

L
N




 
 

Eqa. 6-6 
 
 
Carrying-out the operations indicated brings us to … 
 
 
 

Eqa. 6-7 
 
 
which ultimately reveals the primacy of a ratio L:Q in governing X-motion: 
 
 
 

Eqa. 6-8 
 
 
Thus we observe that the dynamics of X-motion are entirely controlled by 
dimensions in the Z-direction, while H and S are irrelevant. Noting that the string-
coupled pendulum’s horizontal dimensions do not enter into the dynamics of 
motion taking place entirely along the X-axis provides some important criteria for 
constructing the principles to be used in our formal development of the param-
eters and equations governing string-coupled pendula:  
 

Since Y-motion does not distort the figure that the pendulum presents to 
the X-Z plane, it cannot cause the X-components of reaction to vary from 
their rest values.  
 
X-motion, on the other hand, can only be governed by the impulses arising 
from the differences between these reactions.  

 
Thus our final observation here is that the dimensions H and S are significant to 
the string-coupled pendulum only in that they specify the rest values of the X-
components of the support reactions that somehow enter into the values taken 
on by the Y-reactions during movements along the Y-axis. The H and S 
dimensions do not enter into purely X-motion because the rest values of the X-
reactions are equal and opposite and will, therefore, cancel out when the net 
impulse from these reactions is determined. 
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Article 7: Principles of analysis. Our formal derivation of the equations and 
parameters governing the movements of string-coupled pendula will be based on 
extensions of the familiar principles commonly used in deriving the simple 
pendulum’s equation of motion. The elementary free body diagram of Figure 7-1 
conveys a sense of the flow of forces in a simple pendulum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7-1 
 
 
In this figure a simple pendulum of length L supports a weight of mass M in a 
gravitational field of intensity G. Displacements from rest along the X-axis are 
measured by the position variable P; accelerations in this direction are denoted 
by A, which is the second derivative of P with respect to time; and the compon-
ents of the tension in the string, T, resolve into TZ and TX along the coordinate 
axes.  
 
Our basic principle for analyzing this figure is simply the definition of a string as it 
is used in structural analysis, viz.: an idealized string offers no resistance to 
forces that would tend to bend it. Observing that the string joining the pendulum 
weight to its support remains straight during oscillations, we must assume that all 
the forces on the pendulum weight always resolve into the axis of the string. The 

foregoing can be summarized in saying that the angle  at which the pendulum is 

inclined must coincide with the inclinations of the tension vector T at all times. 
Mathematically, this condition can be expressed as: 
 
 

Eqa. 7-1 
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AMTX 

GMTZ 

A
G

E
P 

LGAP 

     tcosDtP

   tcosDtP  

222 PLE 

The force diagram in Figure 7-1 allows us to read off the following equations for 
the components of tension: 
 

Eqa. 7-2 
 

Eqa. 7-3 
 
Substituting these components of tension into Equation 7-1 and re-arranging will 
yield: 
 

Eqa. 7-4 
 
Since A is defined as the second time-derivative of P this would be a fairly 
tractable differential equation until we observe that E is related to P by way of 
Pythagoras: 

Eqa. 7-5 
 

                                                                                 ________    

At this point, the typical procedure is to note that √(L2 +  P2) is not greatly 

different from L when P is small In comparison to L. With this provision, we can 
substitute L for E in Equation 7-4 to arrive at Equation 7-6 for the motion of a 
simple pendulum: 

Eqa. 7-6 
 
The equation above defines the simple harmonic motion that is generally thought 
of as being epitomized by simple pendula. The behavior modes to which the 
variable P is constrained by Equation 7-6 can be shown via direct substitution to 
be fully expressed in Equation 7-7 … 
 

Eqa. 7-7 
 
where D arises from an initial displacement of the pendulum weight along the X-
axis and  is given by √G/L. The parameter  allows for motions that are 
initiated by imparting an initial velocity to the pendulum weight. Having 
mentioned the possibility of motions originated in this manner, we are going to 
drop the parameter  from consideration at this point. Our feeling is that the 
motions of a string-coupled pendulum can be made fully apparent through 
initiating stimuli that are entirely confined to displacements of the two pendulum 
weights at time t = 0; and that an exhaustive consideration of all the possible 
initial conditions would quadruple the number of equations and parameters that 
would have to be treated, while adding nothing to the entertainment value of our 
presentation. Thus our references to the equation for the motion of a simple 
pendulum will be:  
 

Eqa. 7-8 
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A passing observation may be made to the effect that our treatment of the 
simple pendulum allows no deviations in the vertical component of the support 
reaction from its rest value of M·G. Since our analyses have lost sight of vertical 
displacements of the pendulum weight when E was equated to L in Equation 
7-6, there are no vertical accelerations to justify any unbalanced forces along 
this axis. Ostensibly the deviations of the vertical support reaction would be 
relatively small, just as P is small relative to L, so that implications of our 
observation have little significance for the simple pendulum. But, when we 
transfer our understanding of the simple pendulum to the analysis of string-
coupled pendula, the simplifications which follow from the assumption of zero 
vertical displacements become significant in a number of ways:  
 

First it should be noted that if nodes  1  and  2  are not displaced 
vertically by either X- or Y-motion, then nodes  3  and  4  will not be 
displaced vertically either. This means that the distance between nodes  
3  and  4  does not change, and that the X-components for the positions 
of these nodes must therefore differ by the distance S at all times.  
 
A second manifestation of our assumption of zero vertical displacements 
is that all motions in the X-Y plane can be decomposed along the X- and 
Y-axes in a manner showing the movements along one axis to be inde-
pendent of the movements taking place along the other axis. On first 
consideration this notion might appear to be arguable from the stand-
point of a balance of moments in the X-Y plane, where it is clear that the 
accelerations and displacement along the two axes do interact to specify 
the Y-components of reaction in ways that differ according to differing 
degrees of the displacements. There are a number of ways to approach 
a point of view in which these interactions appear to be of the ‘second-
order’ variety that were dismissed in our analysis of simple pendula:  
 

Our initial observation might be to the effect that all variations in the 
moment arms owing to displacements in the X-Y plane are small in 
comparison to the dimensions H and S, and that the forces devel-
oped in this plane are small in comparison the constant pull of 
gravity on the pendulum weights. This approach is essentially a 
translation of the simplifying assumptions that were made for a 
simple pendulum to a horizontal plane.  
 
Another approach would originate in the observation that assuming 
zero vertical displacements confers the identity of a linear, elastic 
system on the string-coupled pendulum: in displacing a pendulum 
weight in the horizontal plane, one encounters a resisting force that 
is proportional to the amount of the displacement (see Equation 
7-1). Hence we should again expect the principle of structural 
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superposition to apply, which it does in that all changes in the 
length of moment arms in the X-Y plane will be exactly off-set by an 
opposing variation in the force acting through that moment arm. 

 
A third manifestation of the assumption of zero vertical displacements for 
a string-coupled pendulum is that the vertical components of reaction 
cannot change as a result of the motions taking place in the X-Y plane. 
Here we approach, by another path, the conclusion drawn from Article 
6’s investigation of pulses per half-cycle in exclusively X-motion: 
 

Since Y-motion does not distort the figure that the pendulum 
presents to the X-Z plane, it cannot cause the horizontal 
components of reaction to vary from their rest values.  
 
X-motion, on the other hand, can only be governed by the impulses 
arising from the differences between these reactions.  

 
These notions should be problematic only for X-motion, since 
movements along the Y-axis can be discounted in their effect on vertical 
reaction components on the basis of the same reasoning that was 
presented for a simple pendulum. But it is not entirely clear that the 
displacements taking place in the X-Z plane have been constrained so 
that they will always conspire with the corresponding array of forces in a 
manner that keeps the burden of supporting the pendulum weights 
equally distributed between the two reaction points.  
 

Our formal development of the equations of motion for string-coupled pendula 
will consider the X- and Y-components of motion separately, and then assert 
that the principle of structural superposition allows us to consider that these 
equations hold regardless of what may be happening along a mutually 
orthogonal axis.  
 
The preparation for such an assertion would be entirely complete at this point 
except that our development of the equations for Y-motion depends on constant 
vertical reactions. Thus the discerning reader may not allow that the equations 
for Y-motion hold when X-motion is present. In order to avoid the possibility of 
appearing to use the principle of structural superposition in a facile or merely 
circular manner, let us accept the obligation to demonstrate the constant nature 
of the vertical reactions as part of the development of our equations for X-
motion. 
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


QPRR Y3Z5Y5 

QPRR Y4Z6Y6 

  LPPGA X3X1X1 

 
Article 8: The equations of motion. There are essentially three considerations 
governing the forms of movement that a string-coupled pendulum might 
demonstrate. The first of these are the ‘pendulum’ equations analogous to 
Equation 7-6. As shown in Figure 8-1, these equations require a reference to 
the positions of nodes  3  and  4  in order to relate the accelerations of nodes  1  
and  2  to the inclinations to the strings joining the respective nodes: 
 
 

Eqa. 8-1 
 
 

Eqa. 8-2 
 
 

Eqa. 8-3 
 
 

Eqa. 8-4 
 
 
The structural definition of a string imposes a similar set of constraints on the 
relationships between support reactions and the inclinations of the strings at the 
points of support. A mathematical expression of this notion would requires that 
forces acting at nodes  5  and  6  must resolve into the axis of the string 
connected to that node: 
 
 

Eqa. 8-5 
 
 

Eqa. 8-6 
 
 

Eqa. 8-7 
 
 

Eqa. 8-8 
 
 
A third group of equations arises from the definition of structural support, which 
can be said to generate just that amount of force necessary to keep the support 
point stationary at all times. These equations state 1) an overall balance of the 
forces acting along each coordinate axis, and 2) requirements that the resultant 
of all moments in each plane of motion be zero. 
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The equation assuring that nodes  5 and  6  do not rotate in the Y-Z plane 
expresses a balance of moments about node  5 : 
 
 

Eqa. 8-9 
 
 
The same consideration in the X-Z plane requires that: 
 
 
 
 
 
 

Eqa. 8-10 
 
If the supports are to remain stationary in relation to the Y-axis, the reaction 
components must obey Equation 8-11: 
 
 

Eqa. 8-11 
 
 
A similar equation is required to fix the supports along the X-axis: 
 
 

Eqa. 8-12 
 
 
At this point we have established twelve 
equations and introduced fourteen variables, 
viz.: six components of reaction, R5X, R5Y, 
R5Z, R6X, R6Y, and R6Z; four variables 
specifying the positions of the intermediate 
node points, P3X, P4X, P3Y, and P4Y; and four 
variables specifying the positions of the 
pendulum weights, P1X, P2X, P1Y, and P2Y. 
(Recall that all Z-displacements have been 
disregarded.)  
 
These equations have been chosen so as to 
define a system that we anticipate will 
decompose into independent subsystems for 
governing movements along the two axes of 
motion. As shown in Table 8-1, both halves of 

Unknowns X-motion Y-motion 
   

1. R5Z R5Z 

2. R6Z R6Z 

3. R5X R5Y 

4. R6X R6Y 

5. P3X P3Y 

6. P4X P4Y 

7. P1X P1Y 

8. P2X P2Y 

  
Tbl. 8-1 
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this system involve eight variables, with the vertical components of reaction, R5Z 
and R6Z, being common to each subsystem. (This commonality expresses 
concerns regarding the independence of X- and Y-motions stated earlier.)  
 
We can begin to make up our shortage of equations by a statement of vertical 
equilibrium … 
 

Eqa. 8-13 
 
that can be applied to both X- and Y-motions. One additional equation is also 
available from the consideration of external equilibrium, viz.: the balance of 
moments in the X-Y plane: 
 
 
 
 
 
 

Eqa. 8-14 
 
 
 
But we must note that of the six such equations requiring stationary supports (8-5 
through 8-8, 8-13, and 8-14) any five are sufficient to specify the sixth. The 
remaining equations required to fully specify X- and Y-motion must therefore 
arise from our earlier consideration of analytical principles. To completely specify 
movements along the X-axis we introduce our requirement that the X-distance 
between the intermediate nodes must remain constant: 
 

Eqa. 8-15 
 
Having established that our approximate view of the string-coupled pendulum 
has displacements in the Y-direction doing nothing to change the vertical 
reactions … 
 

Eqa. 8-16 
 
we have also introduced the suspicion that X-movements will leave this equation 
unchanged. But, having introduced the vertical reactions as variables in the 
system of equations specifying X-motion, we are now in a position to allow this 
equation to manifest itself as being valid through all the behavior modes of a 
string-coupled pendulum. 
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  22 pLGa 

Article 9: X-motion. A rigorous general solution to our non-linear system of eight 
equations in eight unknowns can be successfully approached using a number of 
schemes for substitutions and combinations of variables. Recalling some of the 
least incisive of these, our essay might have been a hundred pages longer had 
we not discovered that the pendulum weights always move in simple harmonic 
manner relative to one another when considered from the standpoint of move-
ments along a single coordinate axis. Let us introduce the following change of 
notation to demonstrate and take advantage of this regularity: 
 
 

Eqa. 9-1 
 
 

Eqa. 9-2 
 
 

Eqa. 9-3 
 
 

Eqa. 9-4 
 
 
Re-stating the pendulum Equations 8-1 and 8-2 in terms of our new variables, 
and invoking the equality between P3X and P4X, yields one simple harmonic 
equation …  
 

Eqa. 9-5 
 
and another that remains a bit complicated: 
 

Eqa. 9-6 
 
 
Equation 8-10 can also be simplified by our change in variables … 
 
 

Eqa. 9-7 
 
as can Equation 8-12: 
 

Eqa. 9-8 
 
 
Equations 8-5 and 8-6 are brought into the analysis by solving for P3X and P4X: 
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Eqa. 9-9 
 
 
 

Eqa. 9-10 
 
 
Adding Equations 9-9 and 9-10 yields: 
 
 
 

Eqa. 9-11 
 
 
This equation can be re-stated entirely in terms of the reactions at node  6  by 
using Equation 9-8 to eliminate R5X and Equation 8-13 to eliminate R5Z: 
 
 
 
 

Eqa. 9-12 
 
 
Placing Equation 9-12’s right-most terms on a common denominator prepares for 
an operation that will eliminate R6X:  
 
 

Eqa. 9-13 
 
 
 
 

Eqa. 9-14 
 
  
 
 
 
 
 
 
 

Eqa. 9-15 
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Eqa. 9-16 
 
Substituting this rearrangement of Equation 9-10 … 
 
 

Eqa. 9-17 
 
 
into Equation 9-16 … 
 
 
 

Eqa. 9-18 
 
 
accomplishes the elimination of R6X. And recalling from Equation 8-15 that P4X 
can be substituted for P3X also eliminates P3X from the above: 
 

 
 
 
 

Eqa. 9-19 
 
Further reductions on Equation 9-19 serve to isolate the variables P4X and R6Z: 
 
 
 
 
 

Eqa. 9-20 
 
 
 
 

Eqa. 9-21 
 
 
 

Eqa. 9-22 



 28 
 

      1111 pGQLaHS1pGQLa 

 QLpGa 11 

   
G

aQ

GM

GMRSH
pa

G

L 1Z6
11









11X4 pa
G

L
P2 

 
H

pGMQLMa
GMR 11

Z6




   
G

aQ

G

QLaHS1
pa

G

L 11
11







 
 
Once again noting Equation 8-15’s assertion that P3X and P4X are identical, 
Equation 9-6 can be rearranged to … 
  
 

Eqa. 9-23 
 
 
which allows us to eliminate P4X by combining Equations 9-22 and 9-23: 
 
 
 

Eqa. 9-24 
 
 
Elimination of the reaction R6Z from Equation 9-24 requires a rearrangement of 
Equation 9-7:  
 
 

Eqa. 9-25 
 
 
Combining Equations 9-24 and 9-25 leads to  … 
 
 
 
 

Eqa. 9-26 
which is most conveniently arranged as : 
 
 

Eqa. 9-27 
 
 
Equation 9-27 has two solutions that can be immediately noted and disregarded: 
S = H produces simple harmonic motion described in Equation 4-2 and visualized 
in Figure 4-2; and S = 0 reduces this equation to an identity. One solution to 
Equation 9-27 preserves the time-variant behaviors we seek to explain in an 
equation for simple harmonic (relative) motion, viz.: 
 
 

Eqa. 9-28 
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While this equation is at hand let us use it to substitute for the a1 of Equation 9-7 
in order to establish the behavior of the vertical reactions during displacements 
along the X-axis: 
 
 
 

Eqa. 9-29 
 
Here we have a validation of our postulate that each vertical reaction retains a 
constant value of M•G even while the pendulum weights are displaced along the 
X-axis.  
 
Now let us return to a consideration of Equations 9-5 and 9-28, which 
simultaneously specify the positions of the pendulum weights along the X-axis. 
Continuing with our practice of disregarding motions that are initiated by any 
means except in initial displacement of the pendulum weights, we can solve 
these two equations by inspection:  
 
 

Eqa. 9-30 
 
 

Eqa. 9-31 
 
where C1X and C2X are the initial relative displacements of the two pendulum 

weights, and 1 and 2 have the same identities they were given in Article 4, 

viz.: 
 

Eqa. 4-1 
 
 
 

Eqa. 4-2 
 
 
Equations 9-30 and 9-31 can be solved together to yield separate equations for 
the positions of the pendulum weights throughout time: 
 
 

Eqa. 9-32 
 
 

Eqa. 9-33 
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In order to link these equations to the analysis proceeding from Equations 2-1 
and 2-2, let us evaluate the above in terms of the initial conditions giving rise to 
the observations that were made in Article 2, viz.: at time equals zero, P1 was 
equal to D and P2 was zero. Combining these considerations with Equations 9-32 
and 9-33 will specify C1X = C2X = D: 
 
 

Eqa. 9-34 
 
 

Eqa. 9-35 
 
Using the trigonometric identities for the sums and differences of angles that 
were introduced in Article 2, we can transform each of the above into the 
standard form for bi-harmonic motion … 
 
 

Eqa. 9-36 
 
 
 
 

Eqa. 9-37 
 
 
where D is the initial displacement of the first pendulum weight, and the second 
pendulum weight starts from rest. 
 
This article has now validated the speculative discourse of Articles 2 and 4 on the 
basis of the laws of motion and our principles of analysis. We have also 
established that our principles of analysis imply vertical reactions that are not 
altered by displacements in the planes of motion, and that our mathematical 
approximation of a string-coupled pendulum is therefore Iinear and elastic in 
regard to both X- and Y-motion. Hence we may now claim that our principles of 
analysis contain the sanction for our linear superposition of the effects that the 
motion of one pendulum weight has on the other, and for our decomposition of all 
motions into X- and Y-components. 
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Article 10: Y-motion. From our experience in the previous article, we should 
expect that a change of variables emphasizing the displacements of the 
pendulum weights relative to one another will greatly simplify our analysis for 
motion along the Y-axis. 

 
Eqa. 10-1 

 
 

Eqa. 10-2 
 
 

Eqa. 10-3 
 
 

Eqa. 10-4 
 
 
Restating the pendulum Equations 8-3 and 8-4 for Y-motion in terms of these 
new variables yields: 
 

Eqa. 10-5 
 
 

Eqa. 10-6 
 
 
A simple harmonic relationship will appear immediately upon re-stating Equation 
8-9 in terms of these new variables: 
 
 

Eqa. 10-7 
 
Equation 8-11 is also greatly simplified by this procedure: 
 
 

Eqa. 10-8 
 
Equations 8-7 and 8-8 express the relationships between reactions and the 
intermediate node points: 
 
 

Eqa. 10-9 
 
 

Eqa. 10-10 
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It is unfortunate that this particular compliment of equations does not contain 
enough information to specify the variable a2, while a1 is completely specified by 
Equation 10-9, and Equation 10-10 is merely redundant. Clearly one of these 
equations must be dropped in favor of a transformation upon Equation 8-14: 
 
 

Eqa. 10-11 
 
 
Here we have ignored moments arising from displacements of the pendulum 
weights along the X-axis in accordance with the principles of analysis that imply a 
complete separation between actions taking place along the axes of motion. 
(Please recall from Article 7 that the practical implications of ignoring X-displace-
ments in the moment equation for the X-Y plane was that moments arising from 
accelerations in the X-direction result in off-setting moments which arise from 
changing the length of the moment arms through which the Y-forces are acting.)  
 
Re-expressing Equation 10-11 in terms our change in variables proceeds thusly: 
 
 

Eqa. 10-12 
 
 
 

Eqa. 10-13 
 
 
 

Eqa. 10-14 
 
 
The reaction forces can be eliminated from our development by combining 
Equations 10-8, 10-9, 10-10, and 8-16. The reactions are brought together by 
adding Equations 10-9 and 10-10: 
 
 

Eqa. 10-15 
 
 
Equation 8-16 sanctions replacing Equation 10-15’s vertical reactions with the 

constant MG: 
 
 

Eqa. 10-16 
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And Equation 10-8 then allows the replacement of R5Y  R6Y by Ma1: 

 
 

Eqa. 10-17 
 

Equation 10-5 can also be solved for P3Y  P4Y:  

 
 

Eqa. 10-18 
 
 
Equating the right-hand sides of Equations 10-17 and 10-18 we arrive at … 
 
 

Eqa. 10-19 
 
 
which can be re-arranged in the exact form of Equation 10-7, thereby admitting 
this equation back into our system for Y-motion while allowing us to drop the 
consideration of moments in the Y-Z plane that had produced this equation by 
the direct observation recorded in Equation 8-9.  
 
Having thus reconstituted our system of equations for Y-motion we can now use 
Equation 10-11 to isolate the variable a2. Proceeding as above, we begin by 
subtracting Equation 10-9 from Equation 10-10 …  
 
 
 

Eqa. 10-20 
 
 
and once again rely on Equation 8-16 to sanction the replacement of Equation 

10-20’s vertical reactions with the constant MG: 
 
 

Eqa. 10-21 
 
 
Equation 10-8 can be rearranged …  
 
 

Eqa. 10-22 
 
to allow a substitution for R5Y in Equation 10-21: 
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Eqa. 10-23 
 
Equation 10-14 can be rearranged …  
 
 

Eqa. 10-24 
 
to allow a combination of Equations 10-23 with 10-24 that eliminates both R6Y 
and the variable a1: 
 
 

Eqa. 10-25 
 
 
Rearranging Equation 10-6 to isolate the intermediate nodes … 
 
 

Eqa. 10-26 
 
 
allows Equations 10-25 and 10-26 to be combined so as to isolate a2 with p2 in 
an equation involving nothing more than the string-coupled pendulum’s 
dimensions and the gravitational constant: 
 
 

Eqa. 10-27 
 
With Equations 10-7 and 10-27 in hand we can appeal to the analysis that closed 
our previous article on X-motion, Equations 9-34 to 9-39, to say that the 
frequencies for the simple harmonic motion specified in these two equations 
have been identified as the internal frequencies of the bi-harmonic oscillator 
equations that were set out in Articles 2 and 3: 
 
 
 

Eqa. 3-8 
 
 

Eqa. 3-3 
 
 
This means that our geometric analyses in Article 3 regarding Y-motion have 
been validated by application of our principles of analysis. 
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Article 11: Recapitulation. Articles 9 and 10 have now confirmed earlier specula-

tion as to the natural frequencies 1 and 2 underlying both X- and Y-motions of 

string-coupled pendula. These are tabulated below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tbl. 11-1 
 
 

Here we see that the same lesser frequency 2 = 0 underlies both  X- and Y-

motion, 
 
 

Eqa. 11-1 
 

while the greater frequency 1 is unique for motions in either coordinate 

direction: 
 

Eqa. 11-2 
 
 
 
 

Eqa. 11-3 
 
 
Restricting ourselves to those motions arising solely from initial displacements of 
the pendulum weights, D1X, D2X, D1Y, and D2Y, we can elaborate Equations 2-3 
and 2-4 as follows: 
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Eqa. 11-4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Eqa. 11-5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where î and ĵ are vectors of unit length along the X-and Y-axes. 
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Appendix: The differential system. Equations 11-4 and 11-5 are offered as a 
closed-form solution to the string-coupled pendulum problem: for any initial 
displacements, the positions of the pendulum weights can be determined at any 
point in time t. Now that the natural frequencies of the string-coupled pendulum 
are known, it remains to identify these frequencies in terms a differential system 
allowing for continuous emulation of the pendulum’s behaviors. 
 
Where a complicated system’s closed-form solution is unattainable (as is often 
the case) its differential representation can provide the only means of establish-
ing its behaviors. These representations are also informative insofar as they 
require an understanding of the system’s internal mechanics. For example: 
Figure 7-1’s depiction of the relationship between the pendulum weight’s position 
P and its acceleration A is used to complete the signal path at Figure A-1’s right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A-1 
 
 
Figure A-1 particularizes pendula in terms of generic simple harmonic oscillators,  
all of which exhibit this same signal path. Here we see velocity V as both the 
integration of acceleration A, and position P’s rate of change. Thus a gain of unity 

links the rate V with the state variable V. The gain G/L linking P with A assures 

that this simple representation of the relationships among A, V, and P will 
oscillate with a frequency of √G/L. 
 
Representing our string-coupled pendulum in this manner reveals that the 
accelerations A in either coordinate direction are linked to the positions P of both 
pendulum weights: 
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Fig. A-2 
 
 
This classical differential form of the equation for a bi-harmonic oscillator is 
governed a system such as … 
 
 

Eqa. A-1 
 
 

Eqa. A-2 
 
 
which would conceals the natural frequencies of whatever system they describe 
thusly: 
 

Eqa. A-3 
 
 
 

Eqa. A-4 
 
 
Formal development of Equations A-1 through A-4 will complete our exposition of 
the pendulum problem. 
 
Equations 2-1 and 2-2 generate bi-harmonic oscillations in either the X- or Y-
directions when the first pendulum weight is given an initial displacement of D 
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and the second pendulum begins from rest at time t=0. A certain change of 
variables will make these equations easier to handle in the development to 
follow: 
 
 

Eqa. A-5 
 
 

Eqa. A-6 
 
 
 

Eqa. A-7 
 
 
 

Eqa. A-8 
 
 
We also anticipate using the derivatives for sine and cosine functions … 
 
 
 
 
 
as well as the chain rule:   
 
 
 
These assertions allow further simplifying substitutions for Equation A-7 … 
 
 

Eqa. A-9 
 

Eqa. A-10 
 

Eqa. A-11 
 
 

Eqa. A-12 
 
 
When the trigonometric identities of u, v, and their derivatives are substituted into 

Equation A-12 we arrive at 1’s velocity:  
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Eqa. A-13 

 
 

And these same identities then allow computation of 1’s acceleration: 

 
 
 

Eqa. A-14 
 
 
 
 
 
 
 
 
 

Here we see elements of Equations A-7 and A-8 for 1 and 2 emerging on the 

right side of Equation A-14. Combining these three equations reveals that 1’s 

second derivative A1/D involves a simple function of 1 and 2 that bring us close 

to the form of Equation A-1:  
 
 

Eqa. A-15 
 
 

Reference to Equations A-5 and A-6 allow us to evaluate the  and  terms in  

Equation A-15: 
 
 
 
 
 
 
 

Eqa. A-16 
 
 
 
 
 
 

Eqa. A-17 
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Substituting the identities for 22 and 2 established in Equations A-16 

and A-17 into Equation A-15  … 
 
 

Eqa. A-18 
 
 
validates our expectation that Equations A-1, A-3, and A-4 operate together in 
describing the dynamics of string-coupled pendula. A similar development 
proceeding from Equation A-8 will validate Equation A-2’s inclusion in a complete 
specification of these dynamics. 
 

Parallel development of 2 begins at Equation A-9 with a re-specification of the 

variables used in applying the chain rule … 
 
 

Eqa. A-19 
 

Eqa. A-20 
 

Eqa. A-21 
 
 

Eqa. A-22 
 
 

that quickly resolves to 2’s velocity: 

 
 

Eqa. A-23 
 
 

Once again, these same identities allow computation of 2’s acceleration … 

 
 
 

Eqa. A-24 
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where we see elements of Equations A-7 and A-8 for 1 and 2 emerging on the 

right side of Equation A-24. Combining these three equations reveals that 2’s 

second derivative A2/D also involves simple a function of 1 and 2 that bring us 

closer to the form of Equation A-2:  
 
 
 
 

Eqa. A-25 
 
 

Returning to Equations A-5 and A-6, we can evaluate the  and  terms in  

Equation A-25 by substituting the identities for 22 and 2 established in 

Equations A-16 and A-17 … 
 
 
 

Eqa. A-26 
 
 
thus validating the simultaneous operations of Equations A-2, A-3, and A-4. 
 

Moving on to particularize these expressions of  and  for Y-motion, we 

substitute the right-hand sides of Equations 11-1 and 11-3 into Equations A-3 
and A-4: 
 
 

Eqa. A-27 
 
 
 

Eqa. A-28 
 
 
Setting the respective numerators of these equations on a common denominator 
brings us closer to their geometric identities: 
 
 
 

Eqa. A-29 
 
 
 

Eqa. A-30 
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Proceeding to develop Equation A-29 … 
 
 
 
 

Eqa. A-31 
 
 
 
 
 
 

Eqa. A-32 
 
 
 
 
 
 
 

Eqa. A-33 
 
we arrive at expressions for areas in the X-Z plane that were marked-out in 
Figure 5-1: 
 
 

Eqa. A-34 
 
 
 
A parallel development for Equation A-30 anticipates the same treatment of the 
denominator as was carried-out in Equation A-32 … 
 
 
 
 

Eqa. A-35 
 
leading to  … 
 
 
 
 
 

Eqa. A-36 
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which also relates to expressions for areas in the X-Z plane that were marked-out 
in Figure 5-1: 
 

Eqa. A-37 
 
 

Here we might note that the ratio of Y to Y equals Equation 5-18’s approxi-

mation for the number of pulses per half cycle exhibited in Y-motion, ϑ/. 

 

Calculating  and  for X-motion begins by substituting the expressions for X 

and 0 of Equations 11-1 and 11-2 into Equations A-3 and A-4 … 

 
 
 

Eqa. A-38 
 
 
 

Eqa. A-39 
 
 
which leads to immediate simplifications having no need for further reductions: 
 
 
 

Eqa. A-40 
 
 
 

Eqa. A-41 
 
 

It remains only to note that the ratio of X to X tends to approximate Equation 

6-8’s determination of the number of pulses per half cycle exhibited in X-motion: 
 
 
 

Eqa. A-42 
 
 
To the extent that the equality on the right of Equation A-42 might be true, the 
following equation must be valid: 
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Eqa. A-43 

 
 
Squaring both sides, we see that the equality holds insofar as the ratio 1:4 is 
insignificant in comparison to the ratio L:Q. 
 
 
 

Eqa. A-44 
 
  
 
 
 
 
 
 


