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Loci Technical Indifference 
 
 
 
Abstract 
 
 
Demonstrations of neoclassical causality seldom originate in utility tradeoffs defined to 
the extent of specifying a particular functional form. The function must present certain 
properties, especially diminishing marginal utility, which are then demonstrated 
sufficient for the deductions to be made respecting the behavior of economic systems. 
SFEcon’s specific choice of hyperbolic utility tradeoffs reflects our finding that this 
functional form is as uniquely suited to macroeconomic causality as, say, the 
Schrödinger Equation is to elementary chemistry, or as the golden mean is to biology. 
Empirical and philosophical cases for this conviction are developed at sfecon.com. Our 
purpose here is to simply to draw out all the analytic capabilities that the hyperbola 
might provide to economic modeling. 
 
Marginalist criteria for productive optimality are (rightly or wrongly) thought to determine 
an economic being’s optimal operating decisions, viz.: his budgetary expenditure, 
distribution of the budget among productive factors, optimal output, and maximal profits. 
It is speculated that these particulars are entirely determined by 1) a presumption that 
marginal revenues equal marginal costs; 2) knowledge of the geometry of production 
tradeoffs; and 3) an awareness of the price environment in which operating decisions 
are made. While these matters have been proven to the satisfaction of most, their 
elucidation has yet to reveal a general and precise quantitative counterpart for all that 
their geometric presentation entails. This paper examines hyperbolic expressions of 
productive indifference in terms of their ability to answer, in closed-form and for any 
number of inputs, each of the questions comprised in the marginalist oeuvre. 
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1: Hyperbolic Descriptions of Utility Tradeoffs 
 
 
Figure 1-1 shows how a two-dimensional, negative hyperbolic form might be used to 
express the diminishing marginal utility of a single input E in the production of an output 
Y. Parameters Z and U locate the production function’s origin relative to what might be 
called the natural origin of the hyperbolic form, i.e.: the intersection point of the all 
hyperbola's asymptotes. These parameters can be shown to fully describe the 
relationship between Y and E. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1-1 
 
 
 
Since output must vanish when input vanishes, the production function's origin point 
[Z,U] must lie on a general hyperbolic form governed by some parameter a: 
 
 

Eqa. 1-1 
 
 
And the requirement that any other combination of Y and E must lie on the hyperbola 
defined by the same parameter a yields a similar equation: 
 
 

Eqa. 1-2 
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Equations 1-1 and 1-2 can now be solved to eliminate a, 
 

Eqa. 1-3 
 
 
 
and rearranged to yield the desired relationship between output Y and input E: 
 
 

Eqa. 1-4 
 
 
 
Figure 1-2 portrays this same relationship in the three dimensions needed for the case 
of two inputs creating the product. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 1-2 
 
As this figure exhausts our ability to visualize productive indifference, we must now 
engage a purely mathematical model to describe the general case of N factors creating 
the output. Equations 1-5 through 1-8 recapitulate the analysis in Equations 1-1 through 
1-4 for this general case. 
 
 

Eqa. 1-5 
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Eqa. 1-6 
 
 
 
 
 

Eqa. 1-7 
 
 
 
 

Eqa. 1-8 
 
 
 
 
Equation 1-8 parameterizes of the relation between an output Y and inputs EJ in terms 
of a utility set [Z,UJ]. This set describes the vector offset between the production 
function’s origin and the point of intersection of all asymptotes to the hyperbolic form 
constituting the locus of technical optima. 
 
 
 
 
 
 
 
2: The Polynomial Factoring Problem 
 
 
Marginalist discourse describes economic optimality in terms of a relation between 
prices and the gradient of a utility function at its operating point [Y,EJ]. Differentiating the 
production function of Equation 1-8 with respect to an input J yields the following 
expression of marginal product for hyperbolic expressions of indifference: 
 
 

Eqa. 2-1 
 
 
 
Per the fundamental theorem of calculus, optimal use of an input commodity J occurs 
when J’s marginal product equals the ratio of marginal costs (i.e.: the input’s price PJ) to 

marginal revenues (i.e.: the output’s price ). Denoting the optimal instance of the [Y,EJ] 

set as [,QJ], we equate the price ratio with the marginal products of Equation 2-1: 
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Eqa. 2-2 
 
 
Elaborating Equation 2-2 across all of a product’s inputs J=1…N presents a central 

equality  uniting the price, utility parameter, and physical flow associated with each 

axis of the utility function by which an economic actor is defined. 
 
 
 
 

Eqa. 2-3 
 
 
 
 
 
 
 
 
 
 

For want of a more descriptive name, the parameter  is referred-to as a ‘financial 

discriminant’. It constitutes the primary financial descriptor of an economic sector I in an 

economy K. If the optimal IK is known then sector IK can, by way of Equation 2-3, 

determine its optimal asset usage rates QIJK from the shape of its production tradeoffs 
UIJK and prices PJK. 
 

Determination of  requires that all elements of Equations 2-3 cooperate in an exact 

solution to the production function of Equation 1-8. Introducing a unit ratio PJ/PJ to each 
term of Equation 1-7 … 
 
 
 

Eqa. 2-4 
 
 

allows the substitution of  into each term of the above: 

 
 
 

Eqa. 2-5 
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Cross-multiplying over the equality isolates : 

 
 

 Eqa. 2-6 
 
 

Solving for  yields: 

 
 

Eqa. 2-7 
 
 
 
where we see economics’ classic polynomial factoring problem reduced to the 
extraction of a higher-ordered root. Equations 2-3 and 2-7 demonstrate that  [Z,UJ] and 

[,PJ] determine [,QJ] in mathematically closed-form. 

 
 
 
 
 
 
 
 
3: Budget Constraints and the Expansion Path 
 
 
To this point we have epitomized the interaction of a price vector with production 

tradeoffs in the financial discriminant . Now it would be useful to solidify our 

examination of the hyperbolic form by locating  amid the more accepted analytic 

pattern for discerning economic optima. This pattern usually begins with an exterior 

specification of a budget constraint, : 

 
 

Eqa. 3-1 
 
 
 
The analysis then proceeds to determine the spectrum of inputs QJ that produce the 

greatest output Y under the budget constraint  – a process generally envisioned as in 

Figure 3-1. 
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Fig. 3-1 
 
As currently accomplished for, say, the Cobb-Douglas Production Function, disclosure 

of the optimal distribution of  among inputs J involves a Lagrangian transformation 

requiring solution to a linear system of N equations in N unknowns. For hyperbolic 
expressions of productive indifference, this task can be accomplished in closed-form. All 
such analyses begin with the same geometric criteria: maximal Y occurs for the 
spectrum of inputs E1, E2, … , EN  where marginal rates of technical substitution equal 
the slope of the budget constraint: 
 
 

Eqa. 3-2 
 
 
Since marginal rates of technical substitution derive from marginal products, 
 
 

Eqa. 3-3 
 
 
 
they can be readily inferred from Equation 2-1: 
 
 

Eqa. 3-4 
 
 
 
Combining Equations 3-2 and 3-4 expresses our geometric criteria in terms of 
hyperbolic systems: 
 
 

Eqa. 3-5 
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This linear relationship among rates of input EJ under a budget constraint is appropriate  
to the commonplace notion of expansion paths. 
 
Equation 3-5 is a re-expression of Equation 2-3 where the optimal operating decision 
Q1, Q2, … , QN. has been replaced by the general notation for an operating point E1, E2, 

… , EN. When the EJ’s equal the optimal QJ’s the financial discriminant  becomes the 

identity of all the quantities equated in Equation 3-5: 
 
 

 Eqa. 3-6 
 

 

This observation permits us to isolate the budget constraint  by adding all N 

Equations 3-6: 
 
 
 

           Eqa. 3-7 
 
 

Reference to Equation 3-1 shows that the budget  has emerged in Equation 3-7’s 

right-most term, while the interaction of prices with the shape of production tradeoffs is 
entirely contained in the middle term: 
 
 

 Eqa. 3-8 
 

 

Equations 3-7 and 3-8 entirely define : 

 
 

Eqa. 3-9 
 
 
 
Equation 3-6 can be re-arranged to determine the optimal operating decision Q1, Q2, 

… , QN in terms of : 

 
 

 Eqa. 3-10 
 
 

 JJJ QUP 
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Eliminating  from Equations 3-9 and 3-10 results in a closed-form determination of QJ 

in terms of the budget constraint , input prices PJ and the shapes of production 

tradeoffs UJ: 
 
 

 Eqa. 3-11 
 
 
 
 
 
 
 
 
 
4: The Total Cost Curve: 
 
 
Our examination of operating decisions given exterior specification of a budget 

constraint  yielded a spectrum of input rates Q1, Q2, … , QN that is optimal in the sense 

of producing the greatest possible rate of output . Our task here is to derive and 

optimize the functional relationship between  and  in order to create the total cost 

curve of Figure 4-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4-1 
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We begin by eliminating the output ’s price  from Equation 2-4’s presentation of the 

production function: 
 
 
 

 Eqa. 4-1 
 
 
 
Equation 4-1 can be simplified by reference to Equation 2-3, 
 
 
 
 
 
 

Eqa. 2-3 
 
 
 
 
 
 
 

which shows that a computation of the financial discriminant  appears in each 

denominator on this equation’s right-hand side: 
 
 
 

 Eqa. 4-2 
 
 
 
When the interaction between factor prices and production tradeoffs is consolidated in 
Equation 4-3,   
 

 Eqa. 4-3 
 
 
Equation 4-2 can be re-stated in a compact form … 
 
 

 Eqa. 4-4 
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that allows isolation of :  

 
 

 Eqa. 4-5 
 
 
 

Another reference to  can be recalled from our earlier analysis of the budget constraint:    

 
 
 

Eqa. 3-9 
 
 

This equation gives us a relationship between  the budget  in terms of another 

epitome of the interaction between factor prices and production tradeoffs, viz.: 
 
 

 Eqa. 3-8 
 

 

We can now eliminate  's  from Equations 3-9 and 4-5 to establish the desired 

relationship between a budget  and the greatest output  that it can support: 

 
 
 

 Eqa. 4-6 
 
 
 
Figure 4-1 superimposes a revenue curve on Equation 4-6’s cost curve by simply 

erecting a straight line through the origin at a slope equal the output's price . This 

presentation allows us to visualize the final aspect of optimality in which a combination 

of  and  is chosen so as to maximize operating profits . Once again, the 

fundamental theorem of calculus tells that maximal profits occur where marginal 
revenue equals marginal costs: 
 
 

Eqa. 4-7 
 
 
 
The cost curve, Equation 4-6, is easily differentiated, 
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 Eqa. 4-8 

 
 
 
and the differential expression is eliminated by combining Equations 4-7 and 4-8: 
 
 
 

 Eqa. 4-9 
 
 
 
Rearranging Equation 4-9 presents us with an equation that can be reduced to an 
identity confirming our earlier assertions relating to solution of the polynomial factoring 
problem:  
 
 

 Eqa. 4-10 
 
 
 

Reference to Equation 2-3 above finds  on the left side and in the denominator on the 

right side of Equation 4-10. Reference to Equation 2-7 … 
 
 

Eqa. 2-7 
 
 
shows that: 
 
 

Eqa. 4-11 
 
 
Thus Equation 4-10 reduces to an identity confirming our earlier finding that Equation 

2-7’s determination of  does describe the combination of expenditures  and output  

that maximizes profits . 

 
 
 

 Eqa. 4-12 
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5: Household Utility 
 
 
The generation of profits must be represented in any faithful model of a capitalistic 
system. Because SFEcon models presume to comprehend all material and financial 
flows, they must somehow contrive to have industrial sectors’ profits received by some 
non-industrial sectors. Absent such a construction, there would be no possibility of 
completing the monetary circuit. Every SFEcon model must therefore contain at least 
one household sector to receive profits in the form of passive income. 
 
Design of household sectors so as to fit with the general computational scheme 
describing generic industrial sectors is largely a matter of re-sculpting ideas that have 
not changed much since Jevons. Our basic premise is that households arrange their 
affairs for the maximization of leisure; or, more precisely, that time exhausted in the 
acquisition of things is limited by a need to reserve the time needed for the enjoyment of 
things. People generally labor in order to rest; and to earn that which provides comfort, 
amusement, and security in their leisure time. 
 
Stated formally, this means that one stops working when the enjoyment of a prospective 
hour of leisure is equal in value to what is earned by the last hour worked. Figure 5-1 
sketches such a condition for the case of one person consuming one good. This figure 
arrays all the parameters developed for industrial productive tradeoffs in Figure 1-1: a 
set [Z,U] shapes the locus of achievable utility by locating a household utility function’s 

asymptotes; and a price environment [,P] selects the optimal operating point [,Q]. 

The ‘real wage’ is represented by direct intake Q of the sole consumer good. In this 
example, Q=480 physical units/year is just sufficient to make our consumer content with 

6766 hours/year of leisure. 

 

Figure 5-1 introduces a parameter 8766 hours/year to express an inescapable limit 

on each consumer: there are 8766 hours in a year; and all of these hours must be 

accounted as either labor or leisure. Labor is therefore the residual of  with : a typical 

person works about 2000 hours/year, which is (8766)  (6766). Improving 

economic conditions, allowing the real wage Q to rise, will eventuate in greater leisure 
and less labor going to market. 
 
SFEcon’s sign convention is exercised in Figure 5-1. Labor is positive because it goes 
into the economy for the sake of producing other things that come back out of the 
economy. Leisure is negative because it is one of these products: households work to 

support the consumption needed for contentment within the leisure segment  of their 

continuing experience of time . Figure 5-1 inverts the hyperbolic utility surface’s 

industrial representation in Figure 1-1 by making Z a negative quantity. 
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Fig. 5-1 
 

Leisure’s money price  is seen operating in the negative relative to the consumable’s 

price P because leisure is a negative quantity: the more one is at rest, the less one 
earns. According to the premises stated for this analysis (i.e.: the first hour of leisure is 

equal in value to the last hour of labor) negative  is known because positive  must be 

the money wage. Asrises in comparison to commodity prices P, a household can 

afford to work a bit less and yet consume a bit more; and this marginal increase in 
consumption will presumably furnish the corresponding increase in leisure. 
  
Households’ total cost curve is sketched in Figure 5-2. Note that a negative Z parameter 
has swung the cost curve over into the negative domain of the horizontal labor/leisure 
axis. Marginal costs are also negative; and the optimal operating point is selected by 
equating a negation of the wage to the cost curve’s slope. In this example, consumption 

 = 47,173 exceeds wages ·() = 40,000, with the difference being made up out of 

passive interest income  = -7143. Finally, we note that this formulation allows for a 

positive  to depict the steady state of a household wherein wages exceed consumption 

in order to service a constant level of debt. 
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Fig. 5-2 
 
 
 
 
 
 
 
 
6: Computational Approaches to Optimality 
 
 
To this point we have surveyed the computational options that are available when prices 
and the shape of production tradeoffs are known. Let us now consolidate this 
mathematical development in terms of three strategies for computing economic optima 
that might prove useful in economic modeling.  
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As set out in Figure 1-2, the hyperbolic production function relates a physical rate of 
output Y to a vector of factor employments E1, E2 , … , EN, that are themselves 
expressed in their respective physical units/year. This functional relationship is 
controlled by a set of utility parameters Z, U1, U2 , … , UN specifying the shape of an 
economic actor's production tradeoffs. The essence of production theory is to identify a 

unique economic optimum , Q1, Q2,  … , QN from among this continuum of technical 

optima. 
 
Identification of the economic optimum is critically dependent on knowledge of the price 

environment , P1, P2, … , PN. For the hyperbolic system, the interaction between prices 

and the shape of productive options is completely expressed in two parameters: 
 
 

Eqa. 3-8 
 
 
 

Eqa. 4-3 
 
 

Knowledge of the price vector identifies an industrial sector's optimal revenues as ; 
and his budgetary expenditure for asset replenishment as: 
 
 

Eqa. 3-1 
 
 

Finally, these definitions specify financial services , 

 
 Eqa. 6-1 

 
 
the maximization of which defines an economic optimum. 
 
Strategies for computing an economic optimum arise from any of three means by which 
the optimum might be specified. Once the interactions between the prices PJ of a 
sector’s factors of production and its technical tradeoffs UJ have been established per 
Equations 3-8 and 4-3, final specification of the optimum can proceed from any one of 

the set []. Exterior specification of any one of these three parameters should 

permit a computation of the other two, as well as an estimation of the financial 

discriminant . 

                                                 
 or [] for households. Note that this substitution recurs at obvious places in subsequent algebraic 

developments. 
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Figure 6-1 visualizes these three approaches to the cost curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6-1 
 
 

1: When the price  of the product is exogenously specified, as by a perfect market, the 

parameter  is derived from a rearrangement of Equation 4-11: 

 
 

Eqa. 6-2 
 
 
 
Optimal output then becomes known from Equation 2-3: 
 
 

 Eqa. 6-3 
 
 
 
and the optimal budget is most easily derived from a rearrangement of Equation 3-9: 
 

 
Eqa. 6-4 
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2: When the computational cycle begins with an exterior specification of the budget , 

the financial discriminant  emerges directly from Equation 3-9: 

 
 

 Eqa. 3-9 
 
 

The optimal price  of the output derives from a rearrangement of Equation 6-2 above: 

 
 

Eqa. 6-5 
 
 

and the optimal  output again falls out of Equation 6-3. 

 
 

3: The final computational approach to optimality begins with a required output rate . 

Here the optimal budget follows directly from the total cost function in Equation 4-6;  

again falls out of Equation 3-9; and  from Equation 6-5. 

 

Whatever the approach to a cost curve, the optimal financial services  are yielded from 

Equation 6-1, and the corresponding vector of optimal asset employments QJ emerge 
from Equation 3-10: 
 
 

 Eqa. 6-1 
 
 
 

 Eqa. 3-10 
 
 
 
 
 
 
 

7: Alternate Approaches to  

 
 
Having completely explored marginalist criteria from the standpoint of an optimal 
operating decision, we now turn to winnowing-out the marginal values implied by the 
marginal products at a given point on the surface of technical indifference. When an 
economic actor's production tradeoffs Z, U1, U2, … , UN are known, any operating state 
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JJ
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EU

YZP








E1, E2 , … , EN will enter the general hyperbolic production function of Equation 1-8 to 
disclose an output rate Y. All the marginal products would then fall out of Equation 2-1's 
specification of the hyperbola's gradients; and relative prices would be entirely 
determined by a re-interpretation of Equation 2-2: 
 
 

Eqa. 7-1 
 
 
 
At this point, most analytic practice concludes by merely observing that, with relative 
prices known, knowledge of any one price will now determine the absolute magnitude of 
all prices. 
 
Hyperbolic production functions offer the possibility of further analyses facilitating, and 
facilitated by, the dynamic modeling context that the hyperbola has been crafted to 
support. When placed in such a context, hyperbolic production parameters can be used 
to compute prices and values at their absolute levels, as well as to specify interest rates 
and currency values throughout multinational I/O models and across time. These 
models (posted at sfecon.com) are controlled by financial state variables capable of 

disclosing the appropriate measures of financial services  and budgets  in a manner 

that is, as it were, ‘conceptually prior’ to the computation of prices. 
 

Presuming a sector’s  and  are known, our task here will be to infer absolute marginal 

values implied by these rates of financial flow. The interactions of  and  with the 

marginal products implicit in a physical state defined by the EJ's will determine two 

estimates of the financial discriminant,  and , both of which will equal  at a state of 

optimal equilibrium. (In the disequilibrium states characteristic of dynamic models, , , 

and , would be seen proceeding by their separate paths toward mutual convergence.) 

 

Taking a sector’s budget  for current asset replenishment as given, ’s approach to  

derives from the following restatement of a typical equality in Equation 2-3:  
 
 

Eqa. 7-2 
 
 
Multiplying both sides of this equation by EJ creates elements of current expenditure on 
the left side: 
 

 Eqa. 7-3 
 
 

Adding Equations 7-3 for all N Inputs J brings forth the budget : 
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J
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P
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 Y

 
Eqa. 7-4 

 
 
 

Equation 7-4 can then be solved for the desired quantity : 

 
 

Eqa. 7-5 
 
 
 

Taking sector’s financial services  as given, ’s approach to  originates in a sector’s 

earnings , as defined in Equation 6-1. Substituting current output Y for the optimal  in 

this equation yields:  
 

Eqa. 7-6 
 
 

Equation 2-3’s first equality supplies the product’s price  in the above:  

 
 

Eqa. 7-7 
 
 
Multiplying both sides of Equation 7-7 by Y supplies the middle term of Equation 7-6: 
 
 

Eqa. 7-8 
 
 

and substituting  for the  in Equation 7-5 supplies Equation 7-6’s budget term : 

 
 

Eqa. 7-9 
 
 
 

A bit of re-arranging then produces our desired expression for : 

 
 
 

Eqa. 7-10 
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It must be noted that a slightly different expression for  is required for a household 

sector. This is because a household’s product is leisure time, which is the residual of 

labor with its total experience of time . Remuneration is therefore given by the wage  

times Y, where leisure Y is the negation of a negative quantity Y. Household’s 

equivalent to Equation 7-6 is therefore: 
 

Eqa. 7-11 
 
 
 

Our sense of Equation 7-7 must also be adjusted to note that the  of this equation 

computes as a negative to reflect that the marginal cost of leisure is negative: the more 
leisure a household produces, the less it earns in wages. These considerations enter 
into an adjusted version of Equation 7-8: 
 
 

Eqa. 7-12 
 
 
 
and must carry into an adjusted version of Equation 7-9: 
  
 

Eqa. 7-13 
 
 
 
 

Rearranging Equation 7-13 then discloses the household :  

 
 
 

Eqa. 7-14 
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8: Calibrating the Multi-dimensional Hyperbola 
 
 
Inference of a sector’s hyperbolic description of productive indifference proceeds from 

an observed operating decision, , Q1, Q2, … , QN, where the set [,Q] is presumed the 

optimal instance of the [Y,E] set in Equation 1-8’s statement of a production function. 

Starting from Equation 1-7, we replace the [Y,E] set with [,Q] in anticipation of the 

algebraic development for the utility set [Z,U]. 
 
 

Eqa. 8-1 
 
 
 

The [,Q] set is also presumed optimal in regard to an observed price spectrum , P1, 

P2, … , PN. Prices [,P] enter the analysis through a reorganization of Equations 2-3:  

 
 
 

Eqa. 8-2 
 
 
 
 

 
 
 
Substituting the right-hand sides of Equations 8-2 for their identities in Equation 8-1 
eliminates all references to the production coefficients, leaving the financial discriminant 

 as the equation’s only unknown: 

 
 
 

Eqa. 8-3 
 
 
 
Cross-multiplying over the equality simplifies Equation 8-3 to ...  
 
 
 
 

Eqa. 8-4 
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Equation 8-4 can be further reduced by multiplying through with the left-hand-side's 
inverse: 
 
 

 Eqa. 8-5 
 
 
 
 

Extracting  from this equation begins by taking a natural logarithm of each side: 

 
 

Eqa. 8-6 
 
 
 
 
 
Solving Equation 8-6 requires reference to the series expansion of the natural logarithm.  
When | a | < 1,  
 
 

Eqa. 8-7 
 
 
Stating Equation 8-6 in terms of this expansion leads to ... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Eqa. 8-8 
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Taking the first four terms in each expansion of Equation 8-8 to approximate the 

equality and multiplying through by   brings us to Equation 8-9, which is a soluble, 

cubic equation in  for which all the coefficients are observed among an economic 

sector’s operating decisions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Eqa. 8-9 
 
 
A quadratic approximation is also available on the basis of Equation 8-8’s first three 

terms. These two approximations to the financial discriminant , and knowledge of 

which is the better of the two estimates, allows formulation of any number of iterative 

processes by which  might be reported to any desired accuracy. Once  has been 

extracted from this system, Z and all the U 's fall out of Equations 8-2. 
 
 
 
 
 
9: Directions 
 
 
While the fundamental presumption of this monograph has been the optimality of an 
economic sector's steady-state, we have made scattered references to the dynamic, 
multi-sectoral, macroeconomic models that are supported by hyperbolic descriptions of 
productive indifference. Some flavor of these models can be seen in Figure 9-1, where 
one of the earliest BEA benchmark I/O tables has been consolidated and reorganized 
according to the needs of such a model. 
 
Rows correspond to economic sectors, and corresponding columns to the commodities 

they produce. Row 0 contains the negative sense of output ; and Column 0 receives 
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the negative of sectors' budgets . Because these data are compiled in monetary units, 

we must presume that all prices are unity, and that each commodity is measured in 
whatever physical unit this happens to imply.  
 
The model’s operation can be envisioned as an emulation of time in terms of a 
continuous regeneration of this matrix, with the initial unitary prices (really price indexes) 
varying as the model seeks its general optimum. Such simulations are, of course, only 
meaningful if they comprise distinct tables for each national economy in the global web 
of trade. Since all such tables must have identical definitions of sector and commodity, 
they must conform to something like Figure 9-1’s high degree of consolidation. 
 
The boundary conditions for these models would be the hyperbolic production 
coefficients of the sectors, which might be organized along the lines of Figure 9-2. Here 
each sector’s production coefficients UJ are set out in rows. The parameters Z are in 
Row 0 at the column index corresponding to a sector’s row. Column 0 receives each 

sector’s PU . Parameters for Sectors 1 through 18, the producing sectors in this model, 

have been constructed according to the formulae set out in Article 8. Sectors19 and 20 
contain, respectively the Household and Government Sectors, and require somewhat 
different calculations. 
 
In its application to very large scale, long range dynamic systems, the hyperbola offers 
the initial advantage of its computational compactness, i.e.: its closed-form disclosures 
of critical economic references. Hyperbolae are also more transparent to the purposes 
of economic theory than other functional forms – a matter most apparent in the 
hyperbola’s ability to express a varying relation between average products and marginal 
products (unlike the Cobb-Douglas production function, which permanently fixes this 
relation). 
 
The chief advantage of hyperbolae is most likely to issue from this function's unique 
relationship with dynamic phenomena generally. In its expression of technical optima, a 
production function relates inputs to an output rate; and production functions also 
interact with price levels to describe optimal input rates, which add up to the demand 
rates for each economic good. When set in a dynamic context, these computations of 
supply and demand will naturally have their differences continuously integrated to 
establish market levels for every good. Control of these levels will actuate the price 
adjustments that, in turn, control the entire model. Since the integral under a hyperbolic 

surface is a natural logarithm, this simple strategy will install the number e at the center 

of any dynamic analysis. Economic models based on hyperbolic production surfaces 
would therefore automatically engage the notions of Fibonacci and Taylor Series that 
somehow always seem to underlie all numerically precise representations of dynamic 
phenomena. 
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Figure 9-1:  Consolidated Input/Output Table for the U.S. Economy in 1977 
 
 

(27,056) 11,398 (4,202) (7,929) (4,274) 506 (35,283) (7,566) (735) 20

0 1 2 3 4 5 6 7 8 9

 CONTROL  AGRCLTR  FOOD_&T  TEXTILE  FRST_PR  MINING_  PETRO_X  CHEMICL  CERAMIC  CNSTRTN

0  CONTROL 5,012,472 (120,967) (205,632) (93,569) (95,818) (28,419) (43,211) (256,146) (34,798) (265,509)

1  AGRCLTR (92,839) 31,565 11,401 268 496 162  11,992 77 1,091

2  FOOD_&T (182,252) 54,740 40,744 77 7,606 116  5,097 3,111 983

3  TEXTILE (89,076) 2,112 557 36,496 1,179 42  10,973 132 425

4  FRST_PR (82,130) 516 304 869 32,937 339  6,661 327 1,094

5  MINING_ (22,997) 6 2 44 144 3,270  1,518 106 208

6  PETRO_X (20,982) 2 5 13 5  2,436 728 18 2,721

7  CHEMICL (228,940) 346 1,241 1,785 4,011 2,583 62,471 61,907 1,239 2,147

8  CERAMIC (30,006) 4 21 140 1,193 1,989  2,184 4,339 558

9  CNSTRTN (248,839) 662 10 1,498 19,606 2,036  14,396 16,789 341

10  PRIMARY (182,422) 3 22 104 1,316 9,121 27 7,587 1,180 2,714

11  HVY_MFG (70,217) 1 12 114 411 17  1,869 551 414

12  LHT_MFG (217,507) 23 113 5,179 5,066 93  12,524 2,317 893

13  ELCTRNX (105,528) 2 15 92 1,316 38  6,152 1,216 562

14  TRNSPRT (108,133) 8 73 244 133 3 80 10,085 75 3,259

15  CMMRC&F (542,180) 2,126 338 364 3,886 5  7,806 197 17,987

16  CMMNCTN (85,033) 1 19 140 8,410 3  1,928 29 2,168

17  SERVICE (400,069) 2,250 27,732 2,105 3,582 17  14,091 1,293 4,679

18  UTILTYS (77,524) 7 5 5 108 6,043 13,263 8,726 9 3,716

19  HSHLD__ (1,609,022) 10,655 123,103 50,743 7,002 609 117 65,543 2,001 158,806

20  GVRNMNT (643,832) 4,540 4,117 1,218 1,685 1,427 100 11,945 527 60,723

Million $

USA 1977

PE
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Figure 9-1 (continued):  Consolidated Input/Output Table for the U.S. Economy in 1977 
 
 
 

(6,820) 6,688 (2,950) 243 6,568 24,021 376 3,592 (1,929) (8,973) 193

10 11 12 13 14 15 16 17 18 19 20

 PRIMARY  HVY_MFG  LHT_MFG  ELCTRNX  TRNSPRT  CMMRC&F  CMMNCTN  SERVICE  UTILTYS  HSHLD__  GVRNMNT

(198,805) (81,291) (233,104) (115,776) (128,315) (792,280) (85,424) (530,871) (122,456) (1,181,378) (398,703) 0

303 933 153 421 1,901 13,712 349 2,664 1,610 11,063 2,678 1

7,005 287 66 52 4,582 11,874 1,430 6,655 2,136 26,490 9,201 2

153 501 738 51 1,027 4,849 648 3,046 1,245 24,033 869 3

1,844 627 297 84 2,924 5,774 250 2,393 2,301 21,136 1,453 4

1,079 1,708 136 163 311 1,742 41 1,179 1,226 9,221 893 5

923 575 43 278 210 5,209 76 1,215 767 3,570 2,188 6

5,120 1,460 374 169 8,256 10,274 876 11,646 7,787 36,799 8,449 7

749 402 156 58 2,152 1,664 161 1,289 1,775 10,505 667 8

34,003 2,388 1,998 10,673 5,934 26,350 1,065 16,911 850 90,372 2,957 9

66,304 4,992 415 1,380 5,658 14,630 801 5,132 5,954 52,442 2,640 10

15,699 10,067 662 2,121 1,004 4,821 457 2,737 851 27,453 956 11

37,576 4,393 44,370 10,073 3,253 12,474 994 9,282 1,964 63,812 3,108 12

14,878 1,659 1,207 20,284 1,674 8,221 791 5,375 1,219 39,593 1,234 13

1,081 472 2,327 396 19,867 5,671 1,266 7,831 1,074 49,595 4,593 14

541 439 1,684 915 8,006 79,999 12,195 62,425 11,044 221,353 110,870 15

399 315 962 1,801 1,658 4,946 7,663 8,488 927 37,770 7,406 16

3,792 1,670 10,784 4,066 6,951 42,197 11,659 45,952 8,471 196,845 11,933 17

792 84 163 211 2,069 2,344 393 1,498 20,882 11,999 5,207 18

10,166 39,823 141,876 52,368 35,336 495,636 36,796 308,924 42,416 20,834 6,268 19

3,218 1,808 27,643 9,969 8,974 15,872 7,137 22,637 9,886 235,466 214,940 20
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Figure 9-2:  Hyperbolic Production Coefficients for the Consolidated 1977 Table 
 
 

1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9

 CONTROL  AGRCLTR  FOOD_&T  TEXTILE  FRST_PR  MINING_  PETRO_X  CHEMICL  CERAMIC  CNSTRTN

0  CONTROL 344,755 1,122,115 1,253,411 443,231 98,224 62,775 1,500,193 158,247 2,578,709

1  AGRCLTR (4,159,140) 192,223 212,387 223,520 223,292 223,626 0 211,796 223,711 222,697

2  FOOD_&T (17,230,923) 861,743 875,739 916,406 908,877 916,367 0 911,386 913,372 915,500

3  TEXTILE (21,947,916) 1,157,730 1,159,285 1,123,346 1,158,663 1,159,800 0 1,148,869 1,159,710 1,159,417

4  FRST_PR (6,518,721) 346,897 347,109 346,544 314,476 347,074 0 340,752 347,086 346,319

5  MINING_ (1,303,294) 69,799 69,803 69,761 69,661 66,535 0 68,287 69,699 69,597

6  PETRO_X (350,740) 19,562 19,559 19,551 19,559 0 17,128 18,836 19,546 16,843

7  CHEMICL (24,652,005) 1,243,701 1,242,806 1,242,262 1,240,036 1,241,464 1,181,576 1,182,140 1,242,808 1,241,900

8  CERAMIC (2,315,524) 123,445 123,428 123,309 122,256 121,460 0 121,265 119,110 122,891

9  CNSTRTN (43,701,975) 2,312,538 2,313,190 2,311,702 2,293,594 2,311,164 0 2,298,804 2,296,411 2,312,859

10  PRIMARY (26,594,021) 1,338,819 1,338,800 1,338,718 1,337,506 1,329,701 1,338,795 1,331,235 1,337,642 1,336,108

11  HVY_MFG (5,798,790) 308,894 308,883 308,781 308,484 308,878 0 307,026 308,344 308,481

12  LHT_MFG (35,362,734) 1,872,621 1,872,531 1,867,465 1,867,578 1,872,551 0 1,860,120 1,870,327 1,871,751

13  ELCTRNX (13,358,735) 708,643 708,630 708,553 707,329 708,607 0 702,493 707,429 708,083

14  TRNSPRT (8,345,933) 422,695 422,630 422,459 422,570 422,700 422,623 412,618 422,628 419,444

15  CMMRC&F (18,454,598) 997,704 999,492 999,466 995,944 999,825 0 992,024 999,633 981,843

16  CMMNCTN (218,303,814) 11,494,148 11,494,130 11,494,009 11,485,739 11,494,146 0 11,492,221 11,494,120 11,491,981

17  SERVICE (18,493,186) 992,131 966,649 992,276 990,799 994,364 0 980,290 993,088 989,702

18  UTILTYS (2,112,014) 109,469 109,471 109,471 109,368 103,433 96,213 100,750 109,467 105,760

19  HSHLD__ (22,018,557) 1,170,723 1,058,275 1,130,635 1,174,376 1,180,769 1,181,261 1,115,835 1,179,377 1,022,572

20  GVRNMNT (7,330,248) 394,163 394,586 397,485 397,018 397,276 398,603 386,758 398,176 337,980

PU

Million $

USA 1977
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Figure 9-2 (continued):  Hyperbolic Production Coefficients for the Consolidated 1977 Table

1 1 1 1 1 1 1 1 1 1 1 

10 11 12 13 14 15 16 17 18 19 20 
 PRIMARY  HVY_MFG  LHT_MFG  ELCTRNX  TRNSPRT  CMMRC&F  CMMNCTN  SERVICE  UTILTYS  HSHLD__  GVRNMNT 

1,537,627 390,186 2,105,748 824,421 551,018 1,792,110 11,579,573 1,525,252 231,932 1,181,378 398,703 0 
223,485 222,855 223,635 223,367 221,887 210,076 223,439 221,124 222,178 212,725 221,110 1 
909,478 916,196 916,417 916,431 911,901 904,609 915,053 909,828 914,347 889,993 907,282 2 

1,159,689 1,159,341 1,159,104 1,159,791 1,158,815 1,154,993 1,159,194 1,156,796 1,158,597 1,135,809 1,158,973 3 
345,569 346,786 347,116 347,329 344,489 341,639 347,163 345,020 345,112 326,277 345,960 4 
68,726 68,097 69,669 69,642 69,494 68,063 69,764 68,626 68,579 60,584 68,912 5 
18,641 18,989 19,521 19,286 19,354 14,355 19,488 18,349 18,797 15,994 17,376 6 

1,238,927 1,242,587 1,243,673 1,243,878 1,235,791 1,233,773 1,243,171 1,232,401 1,236,260 1,207,248 1,235,598 7 
122,700 123,047 123,293 123,391 121,297 121,785 123,288 122,160 121,674 112,944 122,782 8 

2,279,197 2,310,812 2,311,202 2,302,527 2,307,266 2,286,850 2,312,135 2,296,289 2,312,350 2,222,828 2,310,243 9 
1,272,518 1,333,830 1,338,407 1,337,442 1,333,164 1,324,192 1,338,021 1,333,690 1,332,868 1,286,380 1,336,182 10 

293,196 298,828 308,233 306,774 307,891 304,074 308,438 306,158 308,044 281,442 307,939 11 
1,835,068 1,868,251 1,828,274 1,862,571 1,869,391 1,860,170 1,871,650 1,863,362 1,870,680 1,808,832 1,869,536 12 

693,767 706,986 707,438 688,361 706,971 700,424 707,854 703,270 707,426 669,052 707,411 13 
421,622 422,231 420,376 422,307 402,836 417,032 421,437 414,872 421,629 373,108 418,110 14 
999,289 999,391 998,146 998,915 991,824 919,831 987,635 937,405 988,786 778,477 888,960 15 

11,493,750 11,493,834 11,493,187 11,492,348 11,492,491 11,489,203 11,486,486 11,485,661 11,493,222 11,456,379 11,486,743 16 
990,589 992,711 983,597 990,315 987,430 952,184 982,722 948,429 985,910 797,536 982,448 17 
108,684 109,392 109,313 109,265 107,407 107,132 109,083 107,978 88,594 97,477 104,269 18 

1,171,212 1,141,555 1,039,502 1,129,010 1,146,042 685,742 1,144,582 872,454 1,138,962 1,160,544 1,175,110 19 
395,485 396,895 371,060 388,734 389,729 382,831 391,566 376,066 388,817 163,237 183,763 20 
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GLOSSARY: 
 

                The production function relates ... 

 
 Y        =     the rate of production, units/yr, to 
 EJ       =     the rates of asset expenditure, units/yr 
 

 Z             by way of utility parameters expressing the shape 

UJ             of an economic actor's production alternatives. 

 N                (N is the number of productive factors) 
 
 

               Economic optimality makes critical references to 

                   prices: 
 

         =     the price of the good being produced, $/unit, and 

 PJ       =     the prices of the assets used in production. 
 

                Two parameters express the interaction between 

                   asset prices and utility parameters: 
 
 
 
 
 
 
 

                An economic actor's pattern of money expenditure 

                   divides between ... 
 

        =      $/yr for productive inputs, and 

         =      $/yr for financial services, dividends, etc. 

 

                Economic optimality (maximum ) occurs at: 

 

         =     units/yr of output, supported by 

  QJ      =     units/yr of factor employments. 
 

 


